AMS Common Exam - Part B (CAM), June 2014

This component of the exam (Part B) consists of four problems, choose **THREE** of the four questions to answer. If you do four, the three problems with the lower scores will be counted!

(1). Given the following matrix

\[
A = \begin{pmatrix}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{pmatrix}.
\]

(a). Perform QR decomposition on \(A \) using the Gram-Schmit algorithm.

(b). Perform Householder triangularization on \(A \).

(c). Perform the LU decomposition (Gauss elimination) on \(A \).

(d). Perform the Cholesky factorization of the matrix \(A \).

If you can make three right, you will have full credit (doing four will not add number of points, but may increase your safety margin).
(2). (a). Show that if \(x \) is an \(n \)-vector, then

\[||x||_\infty \leq ||x||_2 \leq \sqrt{n} ||x||_\infty. \]

When will the equality apply? Can the equality be applied to the above two inequalities simultaneously?

(b). For a given matrix

\[
A = \begin{pmatrix}
10 & 1 & 0 \\
1 & 10 & 1 \\
0 & 1 & 10
\end{pmatrix},
\]

calculate \(||A||_1, ||A||_\infty \) and estimate \(||A||_2 \).
(3). Suppose $y_1(x)$, $y_2(x)$, and $y_3(x)$ are homogeneous solutions to a 3rd order, homogeneous linear differential equation. Find Green’s function for the corresponding inhomogeneous equation, and generalize it to n-th order differential equation.
(4). The boundary value problem

\[\varepsilon y'' + x^2 y' - y = 0, \quad y(0) = y(1) = 1, \]

has a boundary layer with the thickness of the order $\varepsilon^{1/2}$ at $x = 0$. Introduce the boundary layer coordinates, find inner and outer differential equations and their solutions in the lowest order, and perform their match. Write down the uniform solution.