Do three out of four problems.

1. An individual has one of three genotypes called dd, dD, and DD, respectively, for a gene associated with disease X. The probability that an individual has genotype dd is 0.49; the probability that an individual has genotype dD is 0.42; and the probability that an individual has genotype DD is 0.09. The probability that an individual with the dd genotype is affected with disease X is 0.10. The probability that an individual with the dD genotype is affected with disease X is 0.75. The probability that an individual with the DD genotype is affected with disease X is 0.99. What is the probability that an individual is affected with disease X? Given that an individual has disease X, what is the probability that the individual is genotype DD?

2. A firm wishes to reduce its backlog of transactions by hiring temporary workers. The firm is equally likely to have 2, 3, 4, or 5 temporary workers on a given day. No matter how many temporary workers there are on a given day, the numbers of transactions completed on a given day by each of these temporary workers are independent Poisson random variables with mean 32. Let X denote the number of transactions completed by the temporary workers on a given day. Find $E[X]$ and $\text{var}(X)$.

3. If the random variables X and Y are identically distributed, not necessarily independent, with finite variance, find $\text{cov}(X + Y, X - Y)$.

4. Let X_1, X_2, X_3 be independent and identically distributed continuous random variables. Compute $P\{X_1 > X_2 \mid X_2 < X_3\}$.