DOCTORAL QUALIFYING EXAMINATION
FALL 2002
Advanced Calculus & Linear Algebra

NAME

SOLAR ID#

Start your answer on each question sheet. Attach all extra sheets you use to the appropriate sheet. Hand in all question sheets.

Note: Answer all questions.

Date: September 3, 2002
Time of Exam: 9AM-11AM
Place of Exam: Stony Brook Union Auditorium
1. Given:

\[\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2} \]

Derive the value of

\[\int_0^\infty \frac{\sin^2 x}{x^2} \, dx \]
Let \(f(x) = 3x^2 \) for \(0 \leq x \leq 1 \) and \(f(x) = 4 - x \) for \(1 \leq x \leq 4 \). Let \(R \) be the region bounded by the \(x \)-axis, the graph of \(f \) and the straight line segments \(x = b \) and \(x = b + 2 \) connecting the graph to the \(x \)-axis. Find the value of \(b \) for which the area of \(R \) is maximum.
Prove by mathematical induction the identity

\[\sum_{k=0}^{n} C(n, k) = 2^n. \]

Here \(C(n, k) \) denote the binomial coefficients \(\binom{n}{k} \).
Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation $T(v) = Av$, where

$$A = \begin{bmatrix} 5 & 5 & 2 \\ -6 & -6 & -5 \\ 6 & 6 & 5 \end{bmatrix}$$

Find $\ker(T)$.
Let A be a skew-symmetric $n \times n$-real matrix, i.e., $A^T = -A$.

(a) Show that A is singular if n is odd.

(b) Show that all the eigenvalues of A are purely imaginary.
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be an affine transformation (a mapping which maps straight line segments into straight line segments) defined by the relation $T(u) = Au + b$, where b is a specified vector in the cartesian plane and A is a 2×2 matrix:

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}.$$

A vector v is called a **fixed point** of T if $Tv = v$. Show that T has a unique fixed point if $(p - 1)(s - 1) - qr \neq 0$.