PROBABILITY THEORY QUALIFYING EXAMINATION

Spring 2002

NAME: _________________________________

Instruction: Work three of the following four problems.

1. Let \(\{A_n\} \) be a sequence of sets. Show the Bonferroni’s inequality,

\[
P(\cap_{i=1}^{n} A_i) \geq \sum_{i=1}^{n} P(A_i) - (n - 1).
\]

2. Suppose that \(X \) takes on one of the values 0, 1, 2. If for some constant \(c \), \(P(X = i) = cP(X = i - 1) \), \(i = 1, 2 \), find \(E(X) \).

3. Let \(X \) be a standard normal random variable, Find the PDF of the random variable \(Y = 2X^2 + 1 \).

4. Consider two independent random variables \(X \) and \(Y \) whose PMFs are given by

\[
p_X(x) = \begin{cases}
 1/2 & \text{if } x = 0, 1, \\
 0 & \text{elsewhere,}
\end{cases}
\quad
p_Y(y) = \begin{cases}
 1/2 & \text{if } y = 1, 2, \\
 0 & \text{elsewhere.}
\end{cases}
\]

Let \(R \) be the random variable that takes with equal probability either the value of \(X \) or the value of \(Y \). Let \(G \) denote the sum of six independent experimental values of \(R \). Find the mean and variance of \(G \).