Qualifying Exam (February 2011): Quantitative Finance

You have 4 hours to do this exam. **Reminder:** This exam is closed notes and closed books.
Do 2 out of problems 1,2,3.
Do 2 out of problems 4,5,6.
Do 3 out of problems 7,8,9,10,11,12.

All problems are weighted equally. **On this cover page write which seven problems you want graded.**

problems to be graded:

__

Academic integrity is expected of all students at all times, whether in the presence or absence of members of the faculty. Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this examination.

Name (PRINT CLEARLY), ID number

__

Signature

__
1). Consider one share of a convertible bond with underlying stock price S_t at time t and maturity T which gives the holder right to receive at expiration either one share of the underlying stock or a fixed cash payment of K, whatever is larger. Assume that (1) the bond has no coupon, (2) the holder will sell the stock immediately if she exchanges the bond to the underlying stock at time T, (3) the default probability of the bond is zero, and (4) the risk free rate r is constant with continuous compounding. Let $V(t)$ denote the price of the bond. Adapt the Black-Scholes option pricing formula for European options to price the convertible bond.

2). The stock price process $(S_t)_{t \geq 0}$ is modeled by the Itô stochastic differential equation as

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

where $(B_t)_{t \geq 0}$ is the standard Brownian Motion and μ and σ are constant positive real numbers. Suppose that the underlying stock is a dividend paying stock and $(D_t)_{t \geq 0}$ is the process of cumulative dividends. The price process of the stock and the cumulative dividend is defined by the Itô process

$$d(S_t + D_t) = (\mu + d)S_t dt + \sigma S_t dB_t$$

where d is the continuous compounding dividend rate. Let r be the risk-free rate. Deduce step by step the Black-Scholes partial differential equation under the complete market.

3). We would like to price a put option with the maturity T and the strike price K under the Gamma-subordinated geometric Brownian motion model (i.e. the Variance Gamma model). Let $(B_t)_{t \geq 0}$ be the standard Brownian Motion and $(\tau_t)_{t \geq 0}$ be the standard gamma process with $\tau_t \sim Gamma(\lambda t, \lambda)$. Suppose $(\tau_t)_{t \geq 0}$ and $(B_t)_{t \geq 0}$ are independent. The risk-neutral stock price process $(S_t)_{t \geq 0}$ is modeled by the Gamma-subordinated geometric Brownian motion as follows:

$$S_t = S_0 \exp \left(rt - \frac{\sigma^2}{2} \tau_t + \sigma B_{\tau_t} \right)$$

where r is the risk-free rate and σ are constant positive real numbers. Describe Monte Carlo analysis to determine the price of the option at time 0 using N trials.

4). Let

$$P = \begin{pmatrix}
0 & 0.25 & a & b \\
0.25 & 0 & c & d \\
0 & 0.25 & 0 & e \\
0.75 & 0 & 0 & 0
\end{pmatrix}$$

be a transition matrix of an irreducible Markov chain with the limiting probability distribution $(0.25, 0.25, 0.25, 0.25)$. Find a, b, c, d, e, f, and g.

5). Two types of customers arrive to a single-server queue according to two independent Poisson processes $N_1(t)$ and $N_2(t)$ with intensities λ_1 and λ_2 respectively. Type i customers arrive according to the Poisson Process $N_i(t)$, $i = 1, 2$. Service times for type i customers are identical, deterministic, and equal to T_i, $i = 1, 2$. Waiting space is unlimited. Find the average waiting time (the average times between arrivals and departures) for type 1 customers.

6). For an M/G/1/loss system with arrival rate λ and mean service time $1/\mu$, find the fraction of lost customers.

7). Consider a gambling in which we are tossing a coin, and when we get a “Head”, we win and get 1$ per one bet, but when we get a “Tail”, we loss and have to pay 1$ per one bet to our counter party. One gambler have a strategy that
• he starts with one bet of the gambling.
• the gambler double his bet after every loss.
• if he wins then he stops the gambling.

Hence, the first win would recover all previous losses plus win a profit equal to 1$. (1) Compute expected value of the strategy if the maximum number of tossing is \(N \). (2) Suppose the probability of “Tail” is greater than 1/2. Then the expected value of profit goes to negative infinite as \(N \) goes to infinite.

8) We would like to measure the value at risk (VaR) of our portfolio using the multi-factor model. Consider a portfolio with \(N \)-stocks and \(K \)-risk-factors. Let \(R_1, R_2, \cdots, R_N \) be random variables for returns of stocks in the portfolio and \(F_1, F_2, \cdots, F_K \) be random variables for factors. The capital allocation rate for the \(n \)th stock is denoted by \(w_n \) and the return of the portfolio is equal to \(R_p = \sum_{n=1}^{N} w_n R_n \). According to the multi-factor model the stock returns in the portfolio are given by

\[
R_n = \mu_n + \sum_{k=1}^{K} \beta_{n,k} F_k + \varepsilon_n, \quad n = 1, 2, \cdots, N,
\]

where \(\mu_n \) is a constant, \(\beta_{n,k} \) is the beta coefficient for the \(k \)th factor with respect to the \(n \)th stock, and \(\varepsilon_n, \quad n = 1, 2, \cdots, N \) are uncorrelated random variables. Calculate the VaR of the portfolio at the 1% confidence level under assumption that

\[
(F_1, F_2, \cdots, F_K) \sim N(0, \Sigma)
\]

and

\[
\varepsilon_n \sim N(0, \sigma_n^2), \quad n = 1, 2, \cdots, N.
\]

Note that \(F(-2.33) \approx 0.01 \) where \(F \) is the cumulative distribution function of the standard normal distribution.

9) The Average Value-At-Risk is a popular coherent risk measure defined by

\[
\text{AVaR}_\alpha(X) = \frac{1}{\alpha} \int_{0}^{\alpha} \text{VaR}_x(X) dx
\]

where \(X \) is the portfolio return. If the distribution of \(R \) is continuous then we have the following property

\[
\text{AVaR}_\alpha(X) = -E[X | X < -\text{VaR}_\alpha(X)] = \frac{1}{\alpha} E \left[-X \mathbb{1}_{\{X < -\text{VaR}_\alpha(X)\}} \right]
\]

where

\[
\mathbb{1}_{\{X < -\text{VaR}_\alpha(X)\}} = \begin{cases} 1, & \text{if } X < -\text{VaR}_\alpha(X) \\ 0, & \text{if } X \geq -\text{VaR}_\alpha(X) \end{cases}
\]

Find closed form solution of \(\text{AVaR}_\alpha(X) \) if \(X \sim N(0, \sigma^2) \).

10) Consider a portfolio consists as \(N \) stocks. Optimize the portfolio using the mean-variance optimization by determining the Lagrangian equation determining the optimal portfolio weights. That is solve

\[
\min_w \text{var} \left(\sum_{n=1}^{N} w_n R_n \right)
\]

s.t.

\[
\sum_{i=1}^{N} w_i (\mu_i - r_f) = m - r_f
\]

\[
\sum_{i=1}^{N} w_i = 1
\]
where $\mu_i = E[R_i]$, m is the expected portfolio return, r_f is the benchmark return, and R_i is the return of i-th asset.

11).

12).